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Abstract 

A volume integral equation method (VIEM) is used to calculate the plane elastostatic field in an unbounded isotropic 
elastic medium containing isotropic or anisotropic inclusions subject to remote loading. It should be noted that this 
newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class 
of problems, since only the Green's function for the unbounded isotropic matrix is involved in their formulation for the 
analysis. A detailed analysis of displacement and stress fields is carried out for isotropic or anisotropic inclusions. The 
method is shown to be very accurate and effective for investigating the local stresses in composites containing isotropic 
or anisotropic fibers. 
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1. Introduction 

Calculation of the stress and strain fields in solids 
containing multiple inclusions and subjected to exter-
nal loads is of considerable interest in a variety of 
engineering applications. A notable example is the 
stress analysis of damaged fiber reinforced compos-
ites that consist of a large number of densely packed 
fibers with voids or cracks in the matrix. The matrix 
and the fibers in composites are usually made of iso-
tropic material; however, some of the constituents can 
be anisotropic. As an example, in SiC/Ti metal matrix 
composites, the matrix is nearly isotropic, but the SiC 
fibers have strong anisotropy. A precise knowledge of 
the deformation and stress fields near interacting iso-
tropic or anisotropic fibers under remote loading can 
be extremely helpful in predicting the failure and 
damage mechanisms in the composites.   

To our knowledge the only available methods to 

solve problems of this type are the finite element 
(FEM) or the boundary integral equation (BIEM) 
method. However, the finite element method is most 
effective when the domain of the problem is finite 
and it is often not possible to separate the influence of 
the boundary from that of the "microscopic" features 
of the material on the elastic field. Conventional finite 
element methods cannot be directly applied to infinite 
domains. The boundary integral equation method is, 
in principle, applicable to this class of problems since 
it can be applied to infinite domains. However, since 
the Green's function for anisotropic inclusions is in-
volved in the boundary integral equation method and 
the Green's function for an anisotropic material is 
much more complex than that for isotropic material, 
their numerical treatment of the boundary integral 
equations becomes extremely cumbersome (see, e.g., 
[1-4]). 

In this paper the solution of the general 
inhomogeneous elastostatic problem is formulated by 
means of a volume integral equation method (VIEM) 
for the effective accurate calculation of the stresses 
and displacements in unbounded isotropic solids in 
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placements in unbounded isotropic solids in presence 
of isotropic or anisotropic inclusions. The recently 
developed volume integral equation method can be 
used to calculate the elastic field in composites con-
sisting of an isotropic matrix containing an arbitrary 
distribution of isotropic or anisotropic fibers or inclu-
sions [5, 6]. In contrast to the boundary integral equa-
tion method, the VIEM requires the Green’s function 
for the isotropic matrix only. Moreover, in contrast to 
FEM, where the full domain needs to be discretized, 
the VIEM requires discretization of the inclusions 
only [6]. 

It should be noted that this newly developed nu-
merical method can also be applied to general two-
dimensional elastodynamic as well as elastostatic 
problems (see, e.g., [7]) for arbitrary geometry and 
number of inhomogeneities. In the formulation of the 
method, the continuity condition at each interface is 
automatically satisfied. Finally, the method takes full 
advantage of the pre- and post-processing capabilities 
developed in FEM and BIEM. 

In this paper, the VIEM is used to calculate the 
plane elastostatic field in an unbounded isotropic 
elastic medium containing isotropic or anisotropic 
inclusions subject to remote loading. A detailed 
analysis of stress field at the interface between the 
matrix and the inclusion is carried out for isotropic or 
anisotropic inclusions. The accuracy and effective-
ness of the new method are examined through com-
parison with results obtained from analytical and 
boundary integral equation methods. It is demon-
strated that the method is very accurate and effective 
for investigating the local stresses in composites con-
taining isotropic or anisotropic fibers [8-10]. 

2. The volume integral equation method 
(VIEM) 
The geometry of the general elastostatic problem is 

shown in Fig. 1. An unbounded isotropic elastic solid 
containing inclusions of arbitrary shape is subjected 
to prescribed loading at infinity. Let 

ijklc denote the 

elastic tensor of the solid. Let (1)
ijklc  denote the elastic 

stiffness tensor of the inclusion and (2)
ijklc  those of the 

unbounded matrix material. The matrix is assumed to 
be homogeneous and isotropic so that (2)

ijklc  is a con-

stant isotropic tensor, while (1)
ijklc  is arbitrary, i.e., the 

inclusions may, in general, be inhomogeneous and 
anisotropic. The interfaces between the inclusions and  

Fig. 1. Geometry of the general elastostatic problem. 

the matrix are assumed to be perfectly bonded insur-
ing continuity of the displacement and stress vectors. 

It has been shown in (Mal and Knopoff [11]; Lee 
and Mal [12]) that the elastostatic displacement in the 
composite satisfies the volume integral equation, 

0
, ,( ) ( ) ( , ) ( ) ,m

m m ijkl i j k lR
u u c g u dx x x   (1) 

where the integral is over the whole space, cijkl = cijkl
(1) 

- cijkl
(2), and gi

m( , x) is the static Green's function (or 
Kelvin's solution) for the unbounded matrix material, 
i.e., gi

m( , x) represents the ith component of the dis-
placement at due to unit concentrated force at x in 
the mth direction. In equation (1), the summation 
convention and comma notation have been used and 
the differentiations are with respect to i. It should be 
noted that the integrand is nonzero within the inclu-
sions only, since cijkl = 0, outside the inclusions. 

If x R (within the inclusions), then Eq. (1) is an 
integrodifferential equation for the unknown dis-
placement vector u(x); it can, in principle, be deter-
mined through the solution of Eq. (1). An algorithm 
based on the discretization of Eq. (1) was developed 
by Lee and Mal [12-13] to calculate numerically the 
unknown displacement vector u(x) by discretizing the 
inclusions using standard finite elements. Once u(x)
within the inclusions is determined, the displacement 
field outside the inclusions can be obtained from Eq. 
(1) by evaluating the integral; and the stress field 
within and outside the inclusions can also be deter-
mined without any difficulty. The details of the nu-
merical treatment of Eq. (1) for plane elastodynamic 
and elastostatic problems can be found by Lee and 
Mal [12-13], and will be omitted. In Eq. (1), gi

m( , x)
is the Green's function for the unbounded isotropic 
matrix material. Thus, the volume integral equation 
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method does not require the use of the Green's func-
tion for the anisotropic material of the inclusions. 
This is in contrast to the boundary integral equation 
method, where the infinite medium Green's functions 
for both the matrix and the inclusion are involved in 
the formulation of the equations. The Green’s func-
tions for anisotropic solids can only be obtained in 
integral forms and their evaluation in the vicinity of 
the source point is very difficult. Since the numerical 
implementation of conventional boundary integral 
equation (BIE) requires the evaluation of the dis-
placements and stresses associated with the Green’s 
function at a large number of points, the method be-
comes extremely unwieldy if not impossible to apply 
in even the simplest of model geometries. The present 
method is free from this problem. 

3. Single inclusion problems 

3.1 Single isotropic inclusion in the unbounded 
isotropic matrix 

In order to check the accuracy of the volume inte-
gral equation method, we first consider plane strain 
problems for a single isotropic cylindrical inclusion in 
the unbounded isotropic matrix under uniform remote 
tensile loading, x

o = o, as shown in Fig. 2. The ma-
trix is assumed to be titanium and the inclusion is SiC 
fiber of radius 70 m. The nominal material proper-
ties of the constituents are given in Table 1 [14]. The 
remote applied loads are assumed to be x

o = 143.1 
GPa.  

Table 1. Material properties of the constituents of SiC-6/Ti-
15-3 composite. 

Material  (GPa) μ (GPa) 

SiC 176.06 176.06 

Ti  67.34  37.88 

Fig. 2. An isotropic inclusion in unbounded isotropic matrix 
under uniform remote tensile loading. 

Let 1, 1 denote Lamé constants of the isotropic 
inclusion, and 2, 2 Lamé constants of the isotropic 
matrix, respectively. 

For plane strain problems, the volume integral 
equation (1) becomes 

0
1 1

1 1
1,1 1,1 1,1 2,2R

1 1
1,2 1,2 2,1 2,2 2,2

1 1
2,2 1,1 2,1 1,2 2,1 1 2

u (x) u (x)

{[ 2 g u g u

g (u u )] [ 2 g u

g u g (u u )]}d d

  (2) 

and 

0
2 2

2 2
1,1 1,1 1,1 2,2R

2 2
1,2 1,2 2,1 2,2 2,2

2 2
2,2 1,1 2,1 1,2 2,1 1 2

u (x) u (x)

{[ 2 g u g u

g (u u )] [ 2 g u

g u g (u u )]}d d

  (3) 

where u1(x), u2(x) are the in-plane displacement com-
ponents, ( + 2 ) = ( 1 + 2 1) - ( 2 + 2 2),  = 1 -

2, and  = 1 - 2.
In Eqs. (2) and (3), gi

m( , x) is the Green's function 
for the unbounded isotropic matrix material and is 
given by [8, 15] 

, ,
3 ln ,

4 ( 2 )
m
i im i mg r r r   (4) 

where r = |x | and i, m = 1, 2 and , μ are the Lamé 
constants for the unbounded isotropic matrix material. 
Thus, the VIEM does not require the use of Green's 
function for the inclusions. This is in contrast to the 
BIEM, where Green’s functions for both the matrix 
and the inclusions are involved in the formulation of 
the problem. 

Finite element discretization of the inclusions in (2) 
and (3) results in a two coupled system of linear alge-
braic equations for the unknown nodal displacements 
inside the inclusion. Once the displacement field, u(x),
within the inclusion is determined, that outside the 
inclusions can be obtained from equations (2) and (3) 
by evaluating the integrals. The stress field within and 
outside the inclusions can also be determined without 
any difficulty. 

Fig. 3 shows a typical discretized model used in the 
VIEM [16]. A total of 256 standard eight-node quad-
ratic, quadrilateral and six-node quadratic, triangular  
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Table 2. Normalized stress components within a cylindrical 
inclusion due to remote loading. 

x / x
o

Exact 1.3167 

VIEM 1.3167 

Fig. 3. A typical discretized model in the volume integral 
equation method.  

elements were used in the VIEM. The number of 
elements, 256, was determined based on a conver-
gence test.

Table 2 shows the comparison between the well-
known analytical solution (see, e.g., [17]) and the 
numerical solution using VIEM. It should be noted 
that the stress components inside the inclusion are 
constant. There is excellent agreement between the 
two sets of results. 

The details of the numerical treatment can be found 
in Lee and Mal [12-13]. 

3.2 Single orthotropic inclusion in the unbounded 
isotropic matrix 

Consider a single orthotropic cylindrical inclusion 
in the unbounded isotropic matrix under uniform 
remote tensile loading, x

o = o, as shown in Fig. 4. 
Let the coordinate axes x1(x), x2(x), x3(x) be taken 
parallel to the symmetry axes of the orthotropic mate-
rial. The matrix is assumed to be titanium and the 
inclusion is an orthotropic fiber of radius 70 m. The 
elastic constants for the isotropic matrix and the 
orthotropic inclusion are listed in Table 3 [18]. Two 
different elastic constants for the orthotropic inclusion 
are considered: in model #1, c11 in the inclusion is 
greater than that in the matrix, and in model #2, c11 in 
the inclusion is smaller than that in the matrix. The 
remote applied loads are assumed to be x

o = 143.1 
GPa. 

Table 3. Material properties of the isotropic matrix and the 
orthotropic inclusion. 

(Unit : GPa) Orthotropic inclusion Isotropic 
matrix #1 #2 

 67.34 - - 
μ 37.88 - - 
c11 143.10 279.08 13.93 
c12 67.34  7.8  0.39 
c22 143.10  30.56  1.53 
c66 37.88 11.8  0.59 

Fig. 4. An orthotropic inclusion in unbounded isotropic ma-
trix under uniform remote tensile loading. 

Let c 11, c 12, c 22, c 66 denote the elastic con-
stants of the orthotropic inclusion, and 2, 2 the 
Lamé constants of the isotropic matrix, respectively. 
The interfaces between the inclusion and the matrix 
are assumed to be perfectly bonded insuring the con-
tinuity of the displacement and stress vectors. 

     
3.2.1 The volume integral equation method (VIEM)  
For plane strain problems, the volume integral 

equation (1) reduces to 

0
1 1

1 1
11 1,1 1,1 12 1,1 2,2R

1
66 1,2 1,2 2,1

1 1
22 2,2 2,2 12 2,2 1,1

1
66 2,1 1,2 2,1 1 2

u ( ) u ( )

{[ c g u c g u

c g (u u )

[ c g u c g u

c g (u u )]}d d

x x

  (5) 

and 

0
2 2

2 2
11 1,1 1,1 12 1,1 2,2R

2
66 1,2 1,2 2,1

2 2
22 2,2 2,2 12 2,2 1,1

2
66 2,1 1,2 2,1 1

u ( ) u ( )

{[ c g u c g u

c g (u u )

[ c g u c g u

c g (u u )]}d d

x x

  (6) 



454 J. Lee / Journal of Mechanical Science and Technology 22 (2008) 450~459 

Table 4. Normalized tensile stress component ( x / x
o)

within the inclusion due to uniform remote tensile loading 
( x

o).

Isotropic matrix 
with orthotropic 
Inclusion (#1) 

Isotropic matrix 
with orthotropic 
inclusion (#2) 

Exact 1.2388 0.2980 

VIEM 1.2389 0.2979 

BIEM 1.2397 0.2986 

where u1(x), u2(x) are the in-plane displacement com-
ponents, c11 = c11 – ( 2 + 2 2), c12 = c12 – 2, c22 =
c22 – ( 2 + 2μ2), and c66 = c66 – μ2.

In Eqs. (5) and (6), m
ig is the Green's function for 

the unbounded isotropic matrix material. Thus, the 
volume integral equation method does not require the 
use of the Green's function for the anisotropic mate-
rial of the inclusions. This is in contrast to the bound-
ary integral equation method, where the infinite me-
dium Green's functions for both the matrix and the 
inclusion are involved in the formulation of the equa-
tions. 

Finite element discretization of the inclusions in (5) 
and (6) results in a two coupled system of linear alge-
braic equations for the unknown nodal displacements 
inside the inclusion. Once the displacement field, u(x),
within the inclusion is determined, that outside the 
inclusions can be obtained from equations (5) and (6) 
by evaluating the integrals. The stress field within and 
outside the inclusions can also be determined without 
any difficulty. 

A total of 256 standard eight-node quadratic, 
quadrilateral and six-node quadratic, triangular 
elements in Fig. 3 were used in the VIEM. The 
number of elements, 256, was determined based on a 
convergence test. 

Table 4 shows the comparison between the analyti-
cal solution [9, 10] and the numerical solution by 
using VIEM. It should be noted that, as expected, the 
stress components inside the inclusion are constant. 
There is excellent agreement between the two sets of 
results [7]. 

The details of the numerical treatment can be found 
in Lee and Mal [12, 13]. 

3.2.2 The boundary integral equation method 
(BIEM)

The integral equation on the outer surface S+ of the 
anisotropic inclusion can be expressed as (Banerjee 
[8]; Rizzo et al. [15]) 

( )

( ) ( )
,,

( ) ( )

[ ( , ) ( ) ( , ) ( )]

Mo
m m ijkl

m M m M
i k l jik lS

u u c

g u g u n ds

x x

x x

 (7) 

while for the interior surface S-

( ) ( ) ( )
,,(x) [ ( , ) ( ) ( , ) ( )]I m I m I

m i k l jiijkl k lS
u c g u g u n dsx x

(8)

In equations (7) and (8) n is the outward unit nor-
mal to S+, and the superscripts (M) and (I) indicate 
that the quantities involved are for the isotropic ma-
trix and the inclusions, respectively. Eqs. (7) and (8), 
together with the continuity conditions across S, give 
rise to the boundary integral equation for u(x). When 
the inclusion becomes a void, the integral equations 
reduce to the standard boundary integral equation 

( ) ( )
,( ) ( ) ( , ) ( )M m Mo

m m i jijkl k lS
u u c g u n dsx x x   (9) 

For plane strain problems in Fig. 4, the integral 
equations on the outer surface of the orthotropic in-
clusion can be expressed as 

0
1 1

1( ) 1( )
1 21 2

1( ) 1( )
1 21 2

0
2 2

2( ) 2( )
1 21 2

2( ) 2( )
1 21 2

( ) ( )

[ ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )] ( )

( ) ( )

[ ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )] ( )

M M
S

M M

M M
S

M M

u u

g t g t

T u T u dS

u u

g t g t

T u T u dS

x x

x x

x x

x x

x x

x x

 (10) 

where ( )Mg  is the Green's function for the un-
bounded isotropic matrix material and is given in Eq. 
(4).  

The associated tractions, ( ) ( , 1, 2)MT  and t
are given by 

1( ) 1( )
11 1,1

1( ) 1( ) 1( )
1 22,2 1,2 2,1

2( ) 2( )
11 1,1

2( ) 2( ) 2( )
1 22,2 1,2 2,1

( 2 )

( ) ,

2

( ) ,

M M

M M M

M M

M M M

T g n

g n g g n

T g n

g n g g n
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1( ) 1( )
22 2,2

1( ) 1( ) 1( )
2 11,1 1,2 2,1

2( ) 2( )
22 2,2

2( ) 2( ) 2( )
2 11,1 1,2 2,1

2

( ) ,

2

( ) ,

M M

M M M

M M

M M M

T g n

g n g g n

T g n

g n g g n

 (11) 

and 

1 1,1 1 2,2 1 1,2 2,1 2

2 2,2 2 1,1 2 1,2 2,1 1

( 2 ) ( ) ,

( 2 ) ( ) .

t u n u n u u n

t u n u n u u n
  (12) 

For the interior surface, the equations are 

1( ) 1( )
1 1 21 2

1( ) 1( )
1 21 2

2( ) 2( )
2 1 21 2

2( ) 2( )
1 21 2

( ) [ ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )] ( )

( ) [ ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )] ( )

I I
S

I I

I I
S

I I

u g t g t

T u T u dS

u g t g t

T u T u dS

x x x

x x

x x x

x x
 (13) 

It should be noted that ( )Ig  and  ( ) ( , 1,2)IT =

in Eq. (13) are the Green's function and their associ-
ated tractions for the orthotropic inclusions. And t  is 
given by 

1 11 1,1 1 12 2,2 1 66 1,2 2,1 2

2 22 2,2 2 12 1,1 2 66 1,2 2,1 1

( )

( )

t c u n c u n c u u n

t c u n c u n c u u n
 (14) 

The Green's functions and their associated tractions 
for the orthotropic material are available in (see, e.g., 
[18-21]). 

Fig. 5 shows a typical discretized model used in the  

Fig. 5. A typical discretized model in the boundary integral 
equation method. 

BIEM. A total of 80 standard quadratic elements were 
used in the BIEM. The number of elements, 80, was 
determined based on a convergence test. 

Table 4 shows the comparison between the analyti-
cal solution [9-10] and the numerical solutions using 
VIEM and BIEM for the normalized tensile stress 
component ( x / x

o) within the orthotropic inclusion 
under uniform remote tensile loading ( x

o). It can be 
seen that there is excellent agreement between the 
three sets of results for all cases considered [7]. 

However, in general, the Green’s function for an 
anisotropic material is much more complex than that 
for isotropic materials. Therefore, the numerical 
implementation of the boundary element method for 
solving anisotropic inclusion problems becomes ex-
tremely cumbersome [4]. 

3.2.3 Numerical formulation     
The volume integral equation involves only ( )Mg

and ( )MT  for the isotropic matrix, while the bound-
ary integral equation involves ( )Ig  and ( )IT  for 
the anisotropic inclusions in addition to these. Fur-
thermore, the singularities in VIEM are weaker (inte-
grable) than those in BIEM, where they are of the 
Cauchy type. We have used the direct integration 
scheme as introduced by [22-24] after suitable modi-
fications to handle the singularities; a description of 
the modified method used in the discretization of the 
volume integral equation is given by Lee and Mal [12, 
13].  

4. Multiple inclusion problems 
For multiple isotropic or anisotropic inclusions,  

the volume integral equation method is easier and 
more convenient to apply than the boundary integral 
equation method. Since the continuity condition at 
each interface is automatically satisfied in the volume 
integral equation formulation, it is not necessary to 
apply continuity conditions at each interface. Also, 
there is no change in the basic formulation from the 
single inclusion case. In the host medium, the con-
trasts in the elastic tensor of the inclusions and the 
matrix vanish, so that, it is necessary to discretize the 
isotropic or anisotropic inclusions only. Furthermore, 
the method is not sensitive to the geometry of the 
inclusions. The details of the numerical treatment and 
illustrative examples of problems involving multi-  
ple isotropic inclusions can be found by Lee and Mal 
[12]. 
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4.1 Multiple isotropic inclusions in unbounded iso-
tropic matrix 

In order to analyze multiple inclusion interactions, 
we first consider plane strain problems for multiple 
isotropic cylindrical inclusions in the unbounded iso-
tropic matrix under uniform remote tensile loading, 

x
o = o, as shown in Fig. 6. Square packing of (a) 9 

inclusions and (b) 25 inclusions is considered with a 
volume concentration, c = 0.35. The square packing 
sequence leads to a fiber separation distance d = 
2.996a (a: radius of each fiber) for c = 0.35. Fig. 7 
shows a typical discretized model used in the VIEM. 
The standard eight-node quadrilateral and six-node 
triangular elements were used in the VIEM. In the 
unbounded isotropic matrix  (  + 2 ), and μ vanish, 
so that it is necessary to discretize the isotropic inclu-
sions only. The total number of elements used in 
VIEM was 2,304. The elastic constants for the mate-
rials of the isotropic matrix and the isotropic inclusion 
are listed in Table 1. 

              ( 1, μ1)

( 2, μ2)

x

y

=180° =0°

oo

VIEM

0

Fig. 6. Multiple isotropic cylindrical inclusions in unbounded 
isotropic matrix under uniform remote tensile loading.  

Isotropic
Inclusion

= 0°= 180°

y

x

Fig. 7. A typical discretized model in the volume integral 
equation method for square array of inclusions. 

Fig. 8 shows the normalized tensile stress compo-
nent ( x / x

o) at the interface between the matrix and 
the central inclusion for models containing a single 
inclusion and two different numbers (9 and 25) of 
square array of inclusions (  = 0 ~ 180°). The interac-
tion effect of a square array of inclusions on the nor-
malized tensile stress component at the interface be-
tween the matrix and the central inclusion appears to 
be relatively small at this concentration. 

4.2 Multiple orthotropic inclusions in unbounded 
isotropic matrix 

In order to investigate the difference between mul-
tiple isotropic-inclusion and anisotropic-inclusion 
interactions, we next consider plane strain problems 
for multiple orthotropic cylindrical inclusions in the 
unbounded isotropic matrix under uniform remote 
tensile loading, x

o = o, as shown in Fig. 9. Square 
packing of (a) 9 inclusions and (b) 25 inclusions is 
considered with a volume concentration, c = 0.35. 
The square packing sequence leads to a fiber separa-
tion distance d=2.996a (a: radius of each fiber) for c= 
0.35. Fig. 7 shows a typical discretized model used 

Isotropic
Inclusion

= 0°= 180°

y

x

Fig. 8. Normalized tensile stress component ( x / x
o) at the 

interface between the central isotropic inclusion and the 
isotropic matrix under uniform remote tensile loading. Re-
sults are almost the same for larger number of inclusions. 
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(C11, C12, C22, C66)

( , μ)

0
=0°=180°

o o

Fig. 9. Multiple orthotropic cylindrical inclusions in un-
bounded isotropic matrix under uniform remote tensile load-
ing. 

in the VIEM. In the unbounded isotropic matrix, c11,
c12, c22, and c66 vanish, so that it is necessary to 

discretize the orthotropic inclusions only. The total 
number of elements used in VIEM was 2,304. The 
elastic constants for the materials of the isotropic 
matrix and the orthotropic inclusion are listed in Ta-
ble 3. The remote applied loads are assumed to be x

o

= 143.1 GPa. 
Fig. 10 shows the normalized tensile stress compo-

nent ( x / x
o) at the interface between the matrix and 

the central inclusion [model Orthotropic #1(a) and 
model Orthotropic #2(b)] for models containing a 
single inclusion and two different numbers (9 and 25) 
of square array of inclusions (  = 0 ~ 180°). The in-
teraction effect of a square array of inclusions on the 
normalized tensile stress component at the interface 
between the matrix and the central inclusion appears 
to be small at this concentration [25].  

5. Concluding remarks       

The volume integral equation method is applied to 
the calculation of the plane elastostatic field in an 
unbounded isotropic elastic medium containing iso-
tropic or anisotropic inclusions subject to remote 
loading. The main advantage of this technique over 
those based on finite elements is that it requires dis-
cretization of the inclusions only in contrast to the 
need to discretize the entire domain. It is similar to the 
boundary integral equation method except for the 
presence of the volume integral over the inclusions 
instead of the surface integrals over the two sides of 
the interface. If the medium contains a small number 
of (isotropic) inclusions, this method may not have 
any advantage over BIEM. However, in the pres-
ence of multiple non-smooth inclusions, the BIEM  

=0°=180°

(a)

(b) 

Fig. 10. Normalized tensile stress component ( x / x
o) at the 

interface between the central orthotropic inclusion and the 
isotropic matrix under uniform remote tensile loading results 
are almost the same for larger numbers of inclusions. 

numerical treatment becomes cumbersome. Since 
standard finite elements are used in the VIEM, it is 
very easy and convenient to handle multiple non-
smooth inclusions. In elastostatic problems involving 
multiple anisotropic inclusions, BIEM numerical 
treatment becomes extremely difficult since the 
Green's function for an anisotropic material is much 
more complex than that for isotropic material. How-
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ever, the volume integral equation method is free 
from this problem. 

Therefore, through the analysis of plane elastostatic 
problems in unbounded isotropic matrix with multiple 
isotropic or orthotropic inclusions, it is established 
that the VIEM is very accurate and effective for in-
vestigating effects of isotropic or general anisotropic 
fiber packing on stresses in composites containing 
arbitrary geometry and multiple isotropic or general 
anisotropic inclusions. 

Finally, the formulations developed in this paper 
can be used to calculate the static stress intensity fac-
tors and other quantities of practical interest in realis-
tic models of materials containing strong heterogenei-
ties. 
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